IMPULSO Y CANTIDAD DE MOVIMIENTO
Según el principio de masa, si a ésta se le aplica una fuerza F adquiere una aceleración a:
F = m.a
Siendo:
F: fuerza [F] = N (Newton)
a: aceleración [a] = m/s²
m: masa [m] = kg
Multiplicando ambos miembros por el tiempo T en que se aplica la fuerza F:
F.t = m.a.t
Como:
a.t = v
siendo:
v: velocidad [v] = m/s
t: tiempo [t] = s
Tenemos:
F.t = m.v
Al término F.t se lo denomina impulso de la fuerza y al término m.v se lo denomina cantidad de movimiento, entonces, para el primero:
I = F.t
siendo:
I: impulso [I] = kg.m/s
para el segundo:
p = m.v
siendo:
p: cantidad de movimiento [p] = kg.m/s
Para deducir las unidades, tenemos:
F.t = m.v
N.s = kg.m/s N = kg.m/s²
kg.m/s².s = kg.m/s
luego:
[I] = [p] = kg.m/s = N.s
El impulso de la fuerza aplicada es igual a la cantidad de movimiento que provoca, o dicho de otro modo, el incremento de la cantidad de movimiento de cualquier cuerpo es igual al impulso de la fuerza que se ejerce sobre él.
Unidades en los distintos sistemas
c.g.s.
|
S.I.
|
Técnico
| |
Cantidad de movimiento
Impulso
|
g.m/s
din.s
|
kg.m/s
N.s
|
kgf.s
kgf.s
|
El impulso y la cantidad de movimiento son magnitudes vectoriales.
Conservación de la cantidad de movimiento
Si con un cuerpo de masa m1 y velocidad v1 se aplica una fuerza a otro cuerpo de masa m2 y velocidad v2, como por ejemplo, en un saque de tenis, en ese instante es aplicable el principio de acción y reacción y tenemos que:
m1.v1 = m2.v2
es decir la masa de la raqueta por su velocidad, en el momento del choque, debe ser igual a la masa de la pelota de tenis por la velocidad que adquiere.
Enunciando la Ley de conservación de la cantidad de movimiento dice:
En cualquier sistema o grupo de cuerpos que interactúen, la cantidad de movimiento total, antes de las acciones, es igual a la cantidad de movimiento total luego de las acciones.
Σm.v = 0
mi.vi = mf.vf
ΔP = Δp1 + Δp2
Choque
Se produce choque entre dos cuerpos cuando uno de ellos encuentra en su trayectoria a otro y produciéndose contacto físico.
Al producirse el choque también se producen deformaciones en ambos cuerpos, éstas pueden desaparecer de inmediato o perdurar. Si las deformaciones desaparecen rápidamente significa que se ha producido un choque elástico, por el contrario, si permanecen se ha producido un choque inelástico o plástico.
En ambos casos ocurre una variación de la energía cinética que se transformará en calor que disiparán los cuerpos.
1) Choque plástico o inelástico
a) Velocidades de igual dirección y sentido
Supongamos un cuerpo 1 de masa m1 y velocidad v1 que se dirige a hacia el cuerpo 2 de masa m2 y velocidad v2, siendo ambas velocidades de igual dirección y sentido. Sobre cada cuerpo actuó en el momento del choque, el impulso que le provocó el otro cuerpo, entonces hay dos acciones de igual intensidad y sentido contrario, en consecuencia ambas cantidades de movimiento serán iguales y de sentido contrario. Luego del choque ambos cuerpos continúan juntos con una velocidad final común a ambos.
La velocidad final será:
m1.v1i + m2.v2i = m1.v1f + m2.v2f
como v1f y v2f son iguales porque ambos cuerpos siguen juntos:
v1f = v2f = vf
m1.v1i + m2.v2i = (m1 + m2).vf
vf = (m1.v1i + m2.v2i)/(m1 + m2)
b) Velocidades de igual dirección y sentido contrario.
En este caso los cuerpos poseían velocidades de igual dirección pero de sentido contrario antes del choque, como en el caso anterior luego del impacto continúan juntos, con una velocidad final que estará dada por la diferencia de las cantidades de movimiento. La velocidad final será:
m1.v1i - m2.v2i = m1.v1f + m2.v2f
igualmente:
v1f = v2f = vf
m1.v1i - m2.v2i = (m1 + m2).vf
vf = (m1.v1i - m2.v2i)/(m1 + m2)
La velocidad final mantendrá la misma dirección pero tendrá el sentido de la velocidad del cuerpo que antes del choque tenga más cantidad de movimiento.
2) Choque elástico
a) Velocidades de igual sentido
Durante el choque cada cuerpo recibe una cantidad de movimiento que es igual a la velocidad perdida por el otro. Al recuperar su forma inicial, cada uno pierde o gana respectivamente, la cantidad de movimiento ganada o perdida en el momento del choque, la velocidad final de cada uno será:
v1f = (v2f + v2i).m2/m1 + v1i
ó:
v1f = v2f + v2i - v1i
b) Velocidades de distinto sentido
En este caso los cuerpos literalmente rebotan, y la velocidad final de cada uno será:
v1f = (v2f - v2i).m2/m1 + v1i
El principio de conservación del impulso es el mismo que el de conservación de la cantidad de movimiento.
Cabe aclarar que en la práctica podemos aplicar el principio de conservación de la cantidad de movimiento durante los choques, siempre que el tiempo que dura el impacto sea muy pequeño.
Ejercicios resueltos de choque
Ejercicio 1
Los siguientes cuerpos chocan de forma elástica.Calcular la velocidad final V2.
Solución
Como nos dicen que se trata de un choque elástico, sabemos que el coeficiente de restitución es igual a 1. Por lo tanto planteamos la fórmula del coeficiente de restitución y despejamos la velocidad del segundo cuerpo.Ejercicio 2
Un cuerpo de 2 kg de masa se dirige en línea recta a 5 m/s hacia otro cuerpo de 3 kg que se encuentra detenido. Luego del choque ambos cuerpos quedan pegados.Calcular la velocidad final de los mismos.
Solución
Planteamos la fórmula de conservación de la cantidad de movimiento.Como sabemos que ambos cuerpos quedan pegados, reemplazamos las dos velocidades finales por una sola (Vf).
Despejamos la velocidad final del sistema y reemplazamos por los valores del ejercicio.
Ejercicio 3
Determinar la velocidad final de m2 y el tipo de choque.Solución
Planteamos la fórmula de conservación de la cantidad de movimiento y despejamos la velocidad final del segundo cuerpo.Para determinar el tipo de choque calculamos el coeficiente de restitución.
Como K es un valor mayor que cero y menor que uno, resulta un choque inelástico (o semielástico).
No hay comentarios:
Publicar un comentario